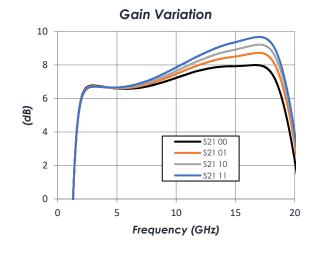
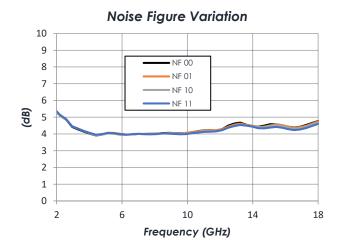

Description

The AM1145 is a wideband digitally controlled variable slope amplifier that covers the 2-18GHz frequency range. The device exhibits low gain at the lower frequencies ascending to higher gain levels at higher frequencies. The increasing gain makes it an ideal solution to equalize gain/insertion loss across an RF system. The AM1145 has four different slope options to allow flexibility in achieving maximum gain flatness in a system while providing unchanged nonlinear performance. It is packaged in a 3mm QFN with internal 50Ω matching and draws 200mW of DC power which makes the AM1145 ideal for demanding, low SWaP applications.


Features

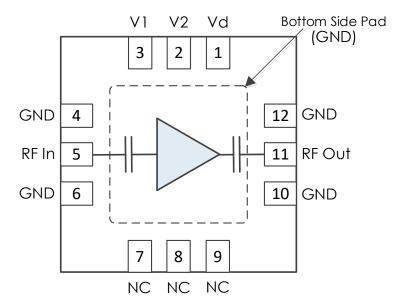

- 2 dB Gain Slope Variation
- 6 dB Gain at 2 GHz
- 8-10 dB Gain at 18 GHz
- +28 dBm OIP3
- +16 dBm P1dB
- 200 mW DC Power Consumption
- +3.3V VDD and Control
- 3mm QFN Package
- -40C to 85C Operation
- Unconditionally Stable

Functional Diagram

Characteristic Performance

1

Table of Contents


Description1	Thermal Information
Features1	DC Electrical Characteristics
Functional Diagram1	RF Performance
Characteristic Performance1	Timing Characteristics
Revision History2	State Table
Pin Layout and Definitions3	Typical Performance
Specifications4	Typical Application1
Absolute Maximum Ratings4	Evaluation PC Board 1
Handling Information4	Related Parts1
Recommended Operating Conditions4	Component Compliance Information 1

Revision History

Date	Revision Number	Notes
March 17, 2022	1	Initial Release

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function	
1	Vd	DC Power Input	
2	V2	Control Voltage 2	
3	V1	Control Voltage 1	
4	GND	Ground - Common	
5	RF In	RF Input – 50 Ohms – AC Coupled	
6	GND	Ground – Common	
7-9	NC	No Connect*	
10	GND	Ground - Common	
11	RF Out	RF Output – 50 Ohms – AC Coupled	
12	GND	Ground – Common	

^{*}Note: NC pins may be grounded or left floating.

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+3.6 V
RF Input Power		20 dBm
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Moisture Sensitivity Level	MSL 3	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage		+3.3 V	
Operating Case Temperature	-40 C		+85 C

Thermal Information

Junction to Case Thermal Resistance (θ _{JC})	331 C/W
Nominal Junction Temperature at +85C Ambient	150 C
Channel Temperature to Maintain 1 Million Hour MTTF	175 C

DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage			+3.3 V	
DC Supply Current	All States, $VDD = +3.3 V$		60 mA	
Power Dissipated	VDD = +3.3 V		200 mW	
Logic Level Low		-0.1 V		+0.4 V
Logic Level High		+2.2 V		+VDD
DC Control Current	VDD = +3.3 V		<100 µA	

RF Performance

(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		2 GHz		18 GHz
Gain	State 00, f=2GHz		6 dB	
	State 01, f=2GHz		6 dB	
	State 10, f=2GHz		6 dB	
	State 11, f=2GHz		6 dB	
	State 00, f=18GHz		7.9 dB	
	State 01, f=18GHz		8.6 dB	
	State 10, f=18GHz		9 dB	
	State 11, f=18GHz		9.5 dB	
Return Loss	f = 10GHz		-15 dB	
Output IP3	f = 10GHz		+28 dBm	
Output P1dB	f = 10GHz		+16.4 dBm	
Noise Figure	f = 10GHz		4.0 dB	

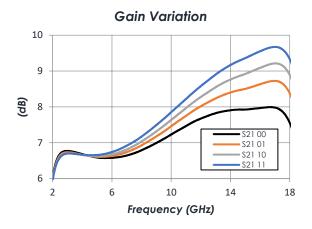
^{*}Note: OIP3 measured with 10MHz tone spacing

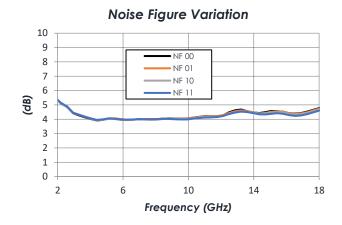
Timing Characteristics

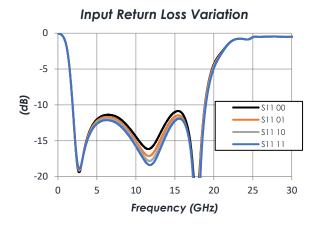
(T = 25 °C unless otherwise specified)

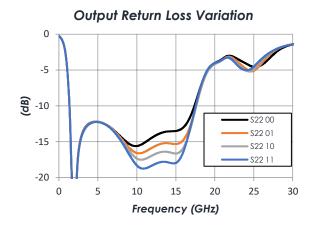
Parameter	Minimum	Typical	Maximum
Switching Speed		20 ns	

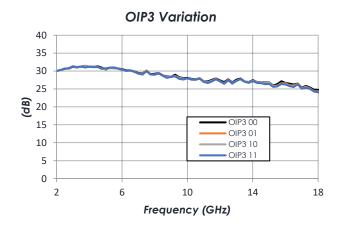
*Note: Timing Characteristics measured from 50% control to 90% RF

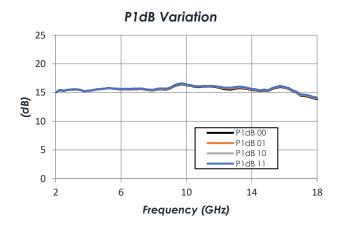

State Table

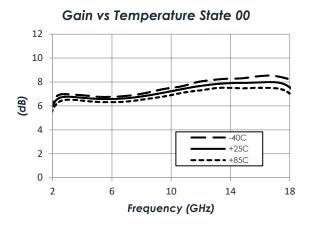

V1	V2	State
Low	Low	2 dB Gain Slope
Low	High	2.7 dB Gain Slope
High	Low	3.1 dB Gain Slope
High	High	3.7 dB Gain Slope

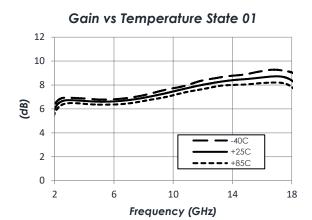


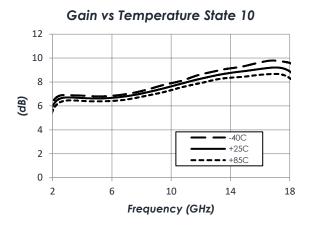

Typical Performance

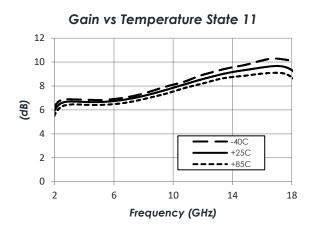

(T = 25 °C unless otherwise specified)



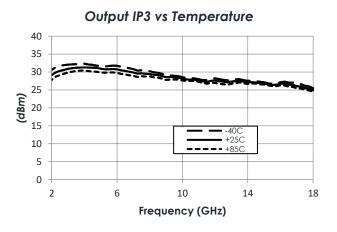


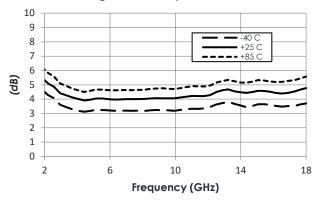


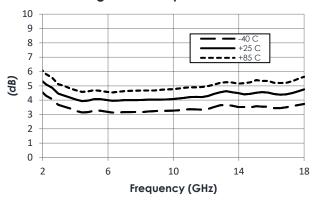



Typical Performance (continued)

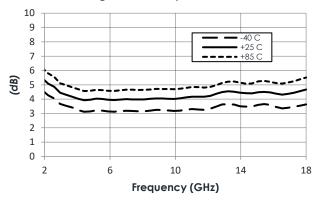
(T = 25 °C unless otherwise specified)

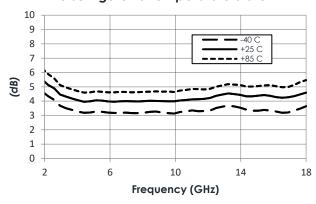


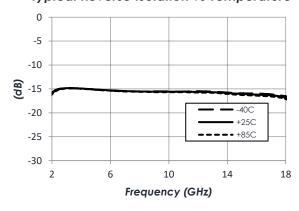


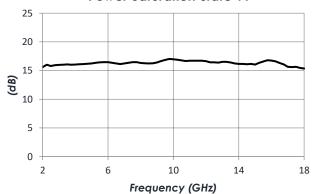

Typical Performance (continued)

(T = 25 °C unless otherwise specified)

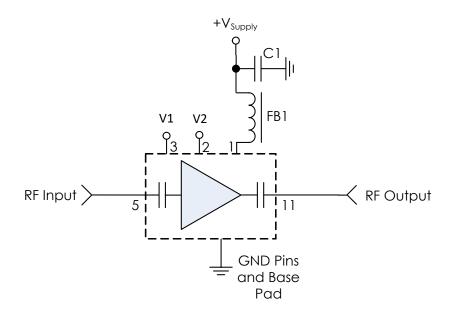

Noise Figure vs Temperature State 00


Noise Figure vs Temperature State 01


Noise Figure vs Temperature State 10


Noise Figure vs Temperature State 11

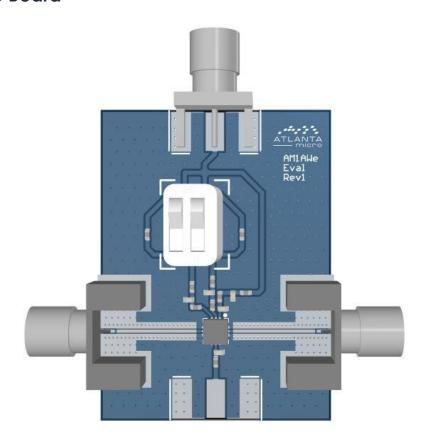
Typical Reverse Isolation vs Temperature



Power Saturation State 11

Typical Application

Recommended Component List (or equivalent):


Part	Value	Part Number	Manufacturer
C1	0.1 uF	C1005X7R1H104K05BB	TDK
FB1	-	MMZ1005A222E	TDK

Notes:

- 1. Control lines are filtered internally providing high frequency isolation.
- 2. AM1145 is AC coupled. No external DC blocking caps are required.

Evaluation PC Board

Related Parts

Part Number	Description
I GII MUIIDEI	Describion

AM1102	DC	to	22 GHz	Low Noise Amplifier
AM1110	2 GHz	to	18 GHz	Slope Correcting Amplifier
AM1113	2 GHz	to	18 GHz	Slope Correcting Amplifier
AM1114	2 GHz	to	18 GHz	Slope Correcting Amplifier
AM1135	6 GHz	to	26.5 GHz	Variable Gain Amplifier
AM1146	2 GHz	to	18 GHz	Variable Gain Amplifier

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.