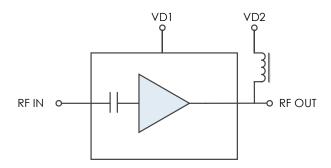
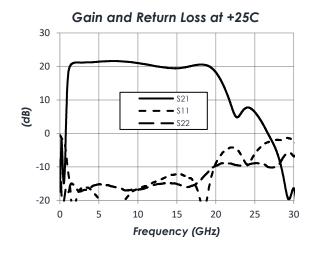


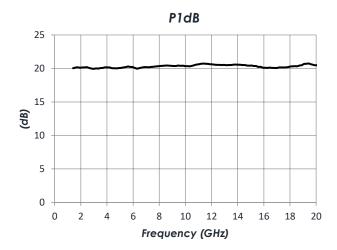
1.4 GHz to 20 GHz Driver Amplifier Description

The AM1136 is a wideband, cascadable amplifier servicing the 1.4 to 20 GHz frequency range. The device exhibits high gain and high linearity across its bandwidth which makes it an excellent choice for a driver amplifier in an LO or transmit path. It is packaged in a 3 mm QFN with internal 50 Ω matching to achieve a compact total PCB footprint for low SWaP applications.



NOTE: Similar part picture shown. Size and footprint identical.


Features

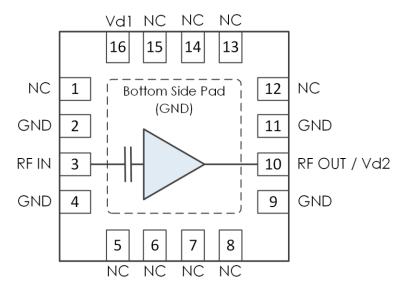

- 21 dB Gain
- +20 dBm P1dB
- +29 dBm OIP3
- 3.5 dB Noise Figure
- +3.3 & +4.1 V Operation
- 3 mm QFN
- -40 C to +85 C Operation

Functional Diagram

Characteristic Performance

Table of Contents

Description1	Thermal Information4
Features1	DC Electrical Characteristics5
Functional Diagram1	RF Performance5
Characteristic Performance1	Typical Performance6
Revision History2	Typical Applications8
Pin Layout and Definitions3	Exact Voltages8
Specifications4	Standard Voltages9
Absolute Maximum Ratings4	Evaluation PC Board10
Handling Information4	Related Parts10
Recommended Operating Conditions4	Component Compliance Information 11


Revision History

Date	Revision Number	Notes
June 20, 2023	1	Initial Release
March 21, 2024	1.1	Corrected PSat and Pin vs Pout Plots
April 22, 2024	1.2	Typical Application Pin Numbers Corrected

2

Pin Layout and Definitions

Pin Number	Pin Name	Pin Function
1	NC	No Connect*
2	GND	Ground - Common
3	RF In	RF Input – 50 Ohms – AC Coupled
4	GND	Ground - Common
5-8	NC	No Connect*
9	GND	Ground - Common
10	RF Out / Vd2	RF Output and DC Power Input – 50 Ohms – DC Coupled.
		External Bias Tee Required
11	GND	Ground – Common
12-15	NC	No Connect*
16	Vd1	DC Power Input

*Note: NC pins may grounded or left open

AM1136 - Amplifier

1.4 GHz to 20 GHz Driver Amplifier

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	6 V
RF Input Power		+20 dBm
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Moisture Sensitivity Level	MSL 3	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage (Vd1)		3.3 V	
Supply Voltage (Vd2)		4.1 V	4.3 V
Operating Case Temperature	-40 C		+85 C

Thermal Information

Junction to Case Thermal Resistance (θ _{JC})	156.4 C/W
Nominal Junction Temperature at +85C Ambient	165 C
Channel Temperature to Maintain 1 Million Hour MTTF	175 C

AM1136 - Amplifier

1.4 GHz to 20 GHz Driver Amplifier DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

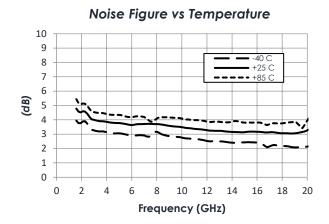
Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage (Vd1)			3.3 V	
DC Supply Voltage (Vd2)			4.1 V	4.3 V
DC Supply Current (Vd1)			53 mA	
DC Supply Current (Vd2)			63 mA	
Power Dissipated	Vd1 = 3.3 V, Vd2 = 4.1 V		0.43 W	

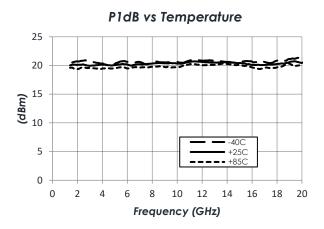
RF Performance

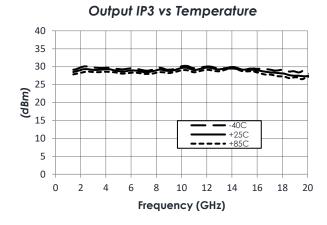
(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		1.4 GHz		20 GHz
Gain ²	f = 1.4 GHz		20.4 dB	
	f = 10 GHz		21.0 dB	
	f = 20 GHz		18.2 dB	
Return Loss ²	f = 1.4 GHz		-18 dB	
	f = 10 GHz		-17 dB	
	f = 20 GHz		-9 dB	
Output IP3 1,2			+29 dBm	
Output P1dB ²			+20 dBm	
Noise Figure ²			3.5 dB	

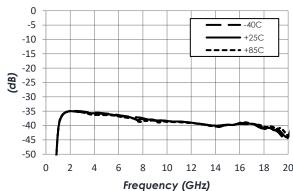
Notes:

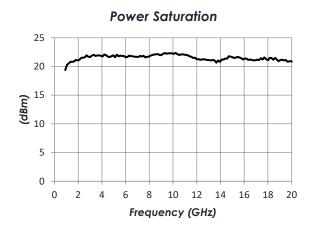

- 1. OIP3 measured with 10 MHz tone spacing with Pout/tone = 0 dBm.
- 2. Data measured directly at output of device. Output bias voltage supplied through bias tee as shown in Typical Application and is measured exclusive of board and connector effects.

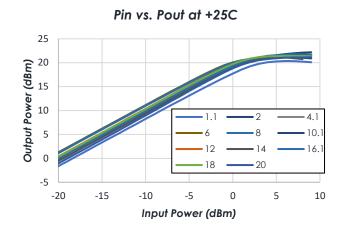



1.4 GHz to 20 GHz Driver Amplifier Typical Performance

(Vd1 = 3.3V, Vd2 = 4.1V, T = 25 °C unless otherwise specified)

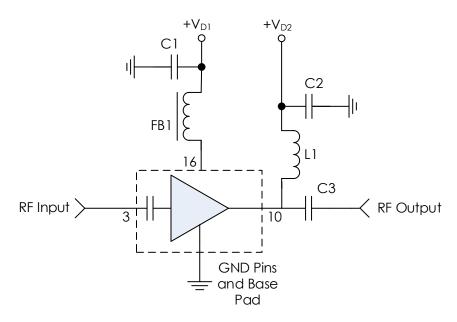

Gain vs Temperature 30 25 20 **9** 15 10 -40C +25C 5 - +85C 0 0 2 10 12 14 16 18 4 Frequency (GHz)





1.4 GHz to 20 GHz Driver Amplifier Typical Performance (continued)

(Vd1 = 3.3V, Vd2 = 4.1V, T = 25 °C unless otherwise specified)



Typical Applications

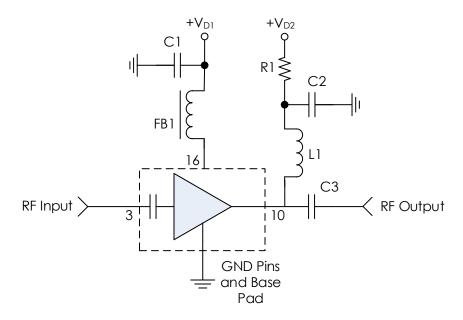
Exact Voltages

(+Vd1 = 3.3V, +Vd2 = 4.1V)

Recommended Component List (or equivalent):

Part	Value	Part Number	Manufacturer
C1	0.1 μF	GRM155R71C104KA88	Murata
C2	0.1 μF	0201BB104KW160	Passive Plus
FB1	-	MMZ1005A222E	TDK
L1	250 nH	CC25T47K240G5-C	Piconics

Notes:

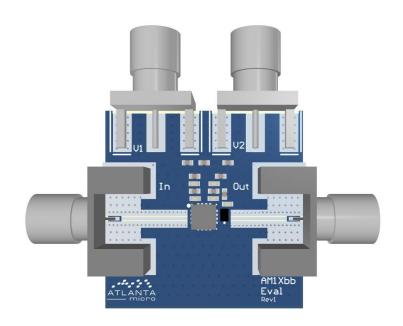

- 1. DC blocking capacitor should be a high performance, low-loss, broadband capacitor for optimum performance.
- 2. High frequency performance is limited only by the frequency response of the output bias tees present in the application circuit. Conical shown performs well within frequency range though other high performance low loss bias tees may be used.

1.4 GHz to 20 GHz Driver Amplifier Typical Application

Standard Voltages

(+Vd1 = 3.3V, +Vd2 = 5.0V)

Recommended Component List (or equivalent):


Part	Value	Part Number	Manufacturer
C1	0.1 μF	GRM155R71C104KA88	Murata
C2	0.1 μF	0201BB104KW160	Passive Plus
FB1	-	MMZ1005A222E	TDK
L1	250 nH	CC25T47K240G5-C	Piconics
R1	15 Ω	CRCW020115R0FNED	Vishay Dale

Notes:

- 1. DC blocking capacitor should be a high performance, low-loss, broadband capacitor for optimum performance.
- 2. High frequency performance is limited only by the frequency response of the output bias tees present in the application circuit. Conical shown performs well within frequency range though other high performance low loss bias tees may be used.
- 3. Dropping resistor may induce voltage drops as input power increases which can result in lower P1dB, Psat, and/or OIP3.
- 4. For better voltage stability and smaller performance impact consider a Zener diode circuit with R1.

1.4 GHz to 20 GHz Driver Amplifier Evaluation PC Board

Notes:

1. Due to connectors and trace lengths the evaluation board performance may differ from that of the data shown in this datasheet. Where possible de-embedding is recommended.

Related Parts

Part Number				Description
AM1095	6 GHz	to	22.25 GHz	Driver Amplifier
AM1111	2 GHz	to	18 GHz	Driver Amplifier
AM1137	20 MHz	to	20 GHz	Driver Amplifier
AM1142	20 MHz	to	18 GHz	Driver Amplifier

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)
Billocoty i i i i i i alato (Bibi)	11000 1 1 111 (0:170 b) Wolgilly

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.