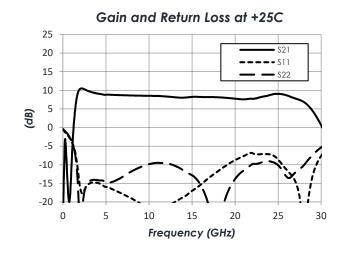
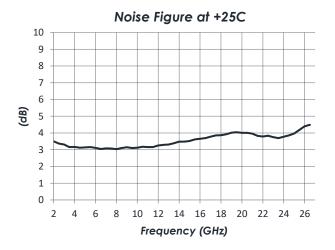

Description

AM1101 is a wideband bypassable amplfiier covering the 2 GHz to 26.5 GHz frequency range. The device exhibits low noise figure and low gain across the entire frequency range while drawing only 100 mW of power. Packaged in a 3mm QFN with an integrated amplifier bypass path and internal 50 Ω matching, the AM1101 represents a dramatic size reduction over a discrete implementation of a bypassable amplifier.


Features


- 8 dB gain
- 3.5 dB Noise Figure
- +22 dBm OIP3
- +10 dBm P1dB
- 5 dB Insertion Loss Bypass Path
- +3.3V Supply
- 102 mW Power Consumption
- -40C to +85C Operation

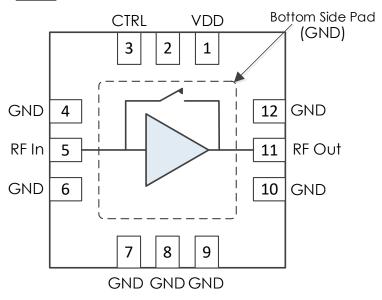
Functional Diagram

Characteristic Performance

2 GHz to 26.5 GHz Bypassable Gain Block

Table of Contents

Description1	DC Electrical Characteristics	5
Features1	RF Performance	5
Functional Diagram1	Timing Characteristics	5
Characteristic Performance1	State Table	5
Revision History2	Typical Performance	6
Pin Layout and Definitions3	Typical Application	8
Specifications4	Evaluation PC Board	9
Absolute Maximum Ratings4	Related Parts	9
Handling Information4	Component Compliance Information	. 10
Recommended Operating Conditions4		


Revision History

Date	Revision Number	Notes
June 12, 2020	1	Initial Release

Pin Layout and Definitions

Note: All Un-Labled Pins are NC or Ground

Pin Number	Pin Name	Pin Function
1	VDD	DC Power Input
2	NC	No connect
3	CTRL	Bypass/Amplifier Mode Control
4	GND	Ground – Common
5	RF In	RF Input – 50 Ohms – DC Coupled. External DC blocking capacitor required
6-10	GND	Ground – Common
11	RF Out	RF Output – 50 Ohms – DC Coupled. External DC blocking capacitor required
12	GND	Ground - Common

2 GHz to 26.5 GHz Bypassable Gain Block

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+3.5 V
RF Input Power		+20 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-55 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Storage Temperature Range (Recommended)	-50 C	+125 C
Moisture Sensitivity Level	MSL 3	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage		+3.3 V	
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+125 C

2 GHz to 26.5 GHz Bypassable Gain Block

DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage			+3.3 V	
DC Supply Current	Amplifier Enabled		31 mA	
	Amplifier Bypassed		1 mA	
Power Dissipated	Amplifier Enabled		102 mW	
	Amplifier Bypassed		3 mW	

RF Performance

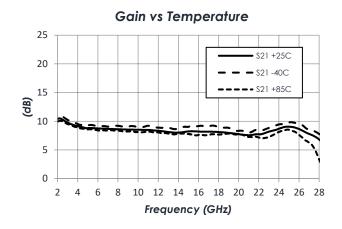
(T = 25 °C unless otherwise specified)

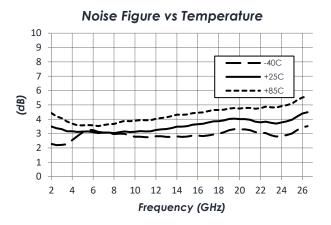
Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		2 GHz		26.5 GHz
Gain	f = 2 GHz		10 dB	
	f = 13 GHz		8 dB	
	f = 26.5 GHz		8 dB	
Return Loss	f = 13 GHz		-10 dB	
Output IP3	f = 2 GHz		+20 dBm	
	f = 13 GHz		+24 dBm	
	f = 26.5 GHz		+18 dBm	
Output P1dB	f = 2 GHz		+9 dBm	
	f = 13 GHz		+11 dBm	
	f = 26.5 GHz		+8 dBm	
Noise Figure	f = 13 GHz		3.5 dB	

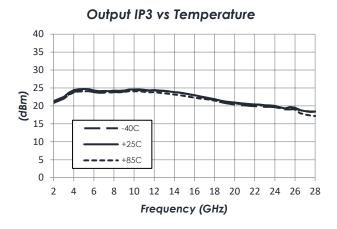
Timing Characteristics

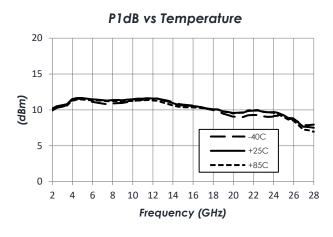
Parameter	Minimum	Typical	Maximum
Switching Speed (Amp Bypass → Amp On)		70 ns	
Switching Speed (Amp On → Amp Bypass)		10 ns	

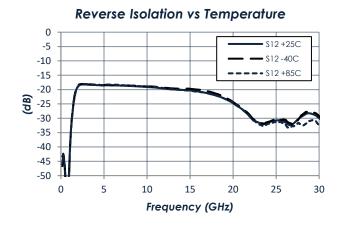
State Table

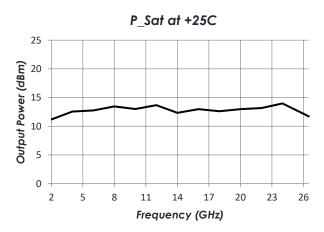

CTL	Amplifier
Low	Bypassed
High	Enabled

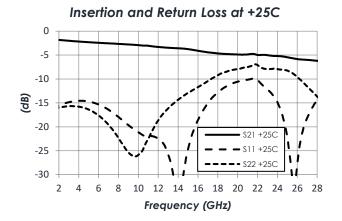


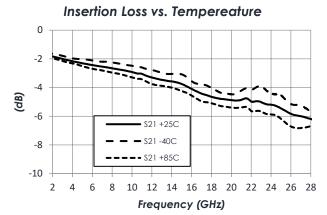

2 GHz to 26.5 GHz Bypassable Gain Block


Typical Performance


(VDD = +3.3 V, Amplifier Enabled)

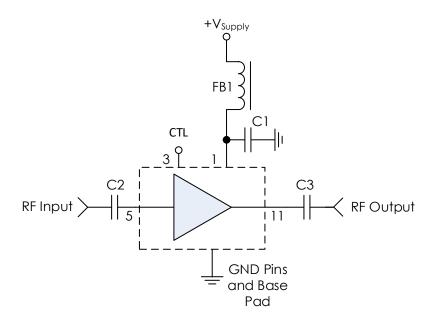






2 GHz to 26.5 GHz Bypassable Gain Block

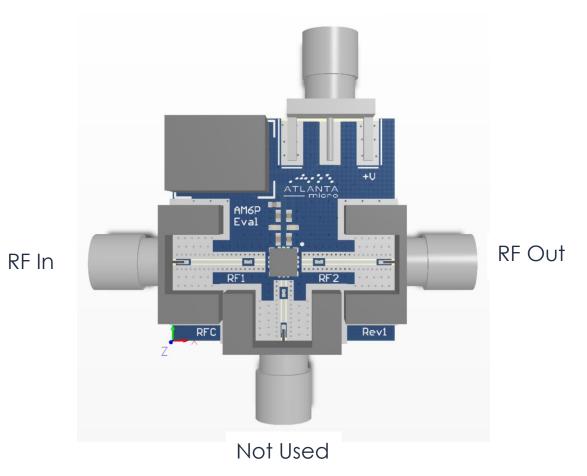
Typical Performance (continued)


(VDD= +3.3 V, Amplifier Bypassed)

Typical Application

Recommended Component List (or equivalent):

Part	Value	Part Number	Manufacturer
C1	0.1 uF	C1005X7R1H104K05BB	TDK
C2, C3	0.1 uF	0201BB104KW160	Passives Plus
FB1	-	MMZ1005A222E	TDK


Notes:

- 1. DC blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance.
- 2. Control line filtered internally providing high frequency isolation.

Evaluation PC Board

Note: Some items shown in the image above may not be installed on the evaluation board

Related Parts

Part Number Description

AM1067	5 GHz	to	20 GHz	Bypassable Amplifier
AM1075	5 GHz	to	26.5 GHz	Bypassable Amplifier
AM1100	2 GHz	to	26.5 GHz	Low Noise Amplifier
AM1102	DC	to	21 GHz	Low Noise Amplifier

2 GHz to 26.5 GHz Bypassable Gain Block

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.